Progress towards regional scale carbon monitoring atmospheric validation: Year 1 results for the Northeast Corridor

Objective:

 downscale the current NASA CMS flux products to the regional and local scales pertinent to Monitoring, Reporting, and Verification (MRV)

Approach:

- focus on the Boston-DC megalopolis corridor
 - 17% of the U.S. population, less than 2% of the land area
- design a measurement network
- develop an atmospheric modeling framework
- High-resolution transport modeling
 - Mesoscale atmospheric model (WRF) coupled to Lagrangian particle dispersion model (STILT)
 - Verification includes PBL data from lidar profilers (MiniMPL)
- High-resolution CO2 flux model incorporating
 - anthropogenic emissions estimates and the
 - CASA model (including its 0.5-deg resolution variant)
- Inverse CO2 flux estimates

Prototype Monitoring, Reporting and Verification System for the Regional Scale: The Boston-DC Corridor

Institutions involved:

Organization	Institutional PI	Project Role
Atmospheric and Environmental Research	Thomas Nehrkorn	PI, meteorological modeling and verification, transport modeling, flux inversion
Harvard University	Steven C. Wofsy	Co-I, Boston measurements, flux inversion
Boston University	Lucy Hutyra	Co-I, a priori anthropogenic and biosphere flux models
Goddard Space Flight Center	G. James Collatz	Co-I, CASA-GFED biosphere fluxes at 0.5° and downscaling
Sigma Space	Philip L. DeCola	Co-I, Mini MPL deployment, operation, and data analysis
Earth Networks	William J. Callahan	Co-I, Tower Measurements of CO ₂ and other greenhouse gases
Jet Propulsion Laboratory	Charles E. Miller	Collaborator, OCO-2 analysis
University of Massachusetts, Boston	Crystal Schaaf	Collaborator, Analysis of UMass Boston data

Observation Network Activities

- Cross-calibration of Boston and Earth Networks GHG sensors
 - Compare measurements using Harvard and Earth Networks calibration gas tanks
 - Agreement to within 0.01 0.02 ppm
- Installation of new GHG tall-tower site on Long Island, NY
 - Site selection based on WRF-STILT sensitivity analysis
- Deployment of mini Micro Pulse Lidar (miniMPLs) collocated with GHG sensors:
 - Long Island tower
 - Upwind location (Lewisburg, PA)
- Real-time acquisition of GHG and miniMPL data

Placement of new tall-tower GHG on Long Island

CMS Science Team Meeting

Analysis of tower sensitivity for candidate sites

Analysis of tower sensitivity for candidate sites

Atmospheric Modeling Framework

- WRF configuration
- WRF model performance evaluation
 - CH4 study for Boston
 - diurnal cycle diagnostics
 - miniMPL <-> WRF PBL comparisons
- Sensitivity studies
 - Controlled tracer experiments for urban area

WRF Modeling

 Modeling framework: WRF model setup for corridor simulations Nested (36km / 12km / 4km / 1.33km resolution) domains Inner-most domain includes an urban canopy parameterization

WRF Modeling

1.33km resolution domain

WRF model evaluation – diurnal cycle diagnostics

- CH₄ study for Boston
 - Uses Boston observation network, similar modeling framework

BU site: Pru site: 29m AGL 215m AGI

Simulated nighttime

too high

- Mean diurnal cycle of temperature and wind speed
- Overpredicted nighttime stability (→PBL scheme, sfc scheme, ...)
- High wind speed bias over land at all hours (→ WRF upgrades)

CMS Science Team Meeting

Nov 12-14, 2014

WRF model evaluation – miniMPL PBL height 20130705 NRB

Poster: comparison with **CAILPSO** data

13

Flux Modeling Framework

- High resolution a priori flux estimates
 - Combine sources of information with high spatial and/or temporal resolution
 - Include estimates of biogenic fluxes in and near urban areas

Flux modeling: FFCO2

Flux modeling: Biosphere

- While urban biomass pools are reduced, they are far from zero and will influence atmospheric mixing ratios.
- New urban vegetation productivity data suggests ~2x the ecosystem productivity per unit biomass due to urban growing conditions.

16

Next steps:

- Observing Network
 - Continued monitoring of GHG sites
 - miniMPL data analysis and comparison with CALIPSO data
- Modeling Framework
 - WRF sensitivity studies
 - miniMPL <-> WRF PBL comparisons
 - WRF-STILT footprint computations for Observing network sites
 - Baseline period: July 2013 July 2014
 - Enhanced coverage: baseline + Long Island tower (starting Apr 2014) + OCO-2 (2015) + FTS (Boston)
 - Flux modeling: refinements of initial baseline estimates
- Top-down inversions

